Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Audiol ; : 1-10, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420783

RESUMO

OBJECTIVE: To evaluate whether a 500 pulses per second per channel (pps/ch) rate would provide non-inferior hearing performance compared to the 900 pps/ch rate in the Advanced Combination Encoder (ACE™) sound coding strategy. DESIGN: A repeated measures single-subject design was employed, wherein each subject served as their own control. All except one subject used 900 pps/ch at enrolment. After three weeks of using the alternative rate program, both programs were loaded into the sound processor for two more weeks of take-home use. Subjective performance, preference, words in quiet, sentences in babble, music quality, and fundamental frequency (F0) discrimination were assessed using a balanced design. STUDY SAMPLE: Data from 18 subjects were analysed, with complete datasets available for 17 subjects. RESULTS: Non-inferior performance on all clinical measures was shown for the lower rate program. Subjects' preference ratings were comparable for the programs, with 53% reporting no difference overall. When a preference was expressed, the 900 pps/ch condition was preferred more often. CONCLUSION: Reducing the stimulation rate from 900 pps/ch to 500 pps/ch did not compromise the hearing outcomes evaluated in this study. A lower pulse rate in future cochlear implants could reduce power consumption, allowing for smaller batteries and processors.

2.
Front Cell Infect Microbiol ; 13: 1275823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053527

RESUMO

West Nile virus (WNV) and Japanese encephalitis virus (JEV) are emerging mosquito-borne flaviviruses causing encephalitis globally. No specific drug or therapy exists to treat flavivirus-induced neurological diseases. The lack of specific therapeutics underscores an urgent need to determine the function of important host factors involved in flavivirus replication and disease progression. Interleukin-6 (IL-6) upregulation has been observed during viral infections in both mice and humans, implying that it may influence the disease outcome significantly. Herein, we investigated the function of IL-6 in the pathogenesis of neurotropic flavivirus infections. First, we examined the role of IL-6 in flavivirus-infected human neuroblastoma cells, SK-N-SH, and found that IL-6 neutralization increased the WNV or JEV replication and inhibited the expression of key cytokines. We further evaluated the role of IL-6 by infecting primary mouse cells derived from IL-6 knockout (IL-6-/-) mice and wild-type (WT) mice with WNV or JEV. The results exhibited increased virus yields in the cells lacking the IL-6 gene. Next, our in vivo approach revealed that IL-6-/- mice had significantly higher morbidity and mortality after subcutaneous infection with the pathogenic WNV NY99 or JEV Nakayama strain compared to WT mice. The non-pathogenic WNV Eg101 strain did not cause mortality in WT mice but resulted in 60% mortality in IL-6-/- mice, indicating that IL-6 is required for the survival of mice after the peripheral inoculation of WNV or JEV. We also observed significantly higher viremia and brain viral load in IL-6-/- mice than in WT mice. Subsequently, we explored innate immune responses in WT and IL-6-/- mice after WNV NY99 infection. Our data demonstrated that the IL-6-/- mice had reduced levels of key cytokines in the serum during early infection but elevated levels of proinflammatory cytokines in the brain later, along with suppressed anti-inflammatory cytokines. In addition, mRNA expression of IFN-α and IFN-ß was significantly lower in the infected IL-6-/- mice. In conclusion, these data suggest that the lack of IL-6 exacerbates WNV or JEV infection in vitro and in vivo by causing an increase in virus replication and dysregulating host immune response.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Camundongos , Citocinas/metabolismo , Interleucina-6 , Febre do Nilo Ocidental/genética , Vírus do Nilo Ocidental/genética
3.
Viruses ; 14(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35746611

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current pandemic, resulting in millions of deaths worldwide. Increasingly contagious variants of concern (VoC) have fueled recurring global infection waves. A major question is the relative severity of the disease caused by previous and currently circulating variants of SARS-CoV-2. In this study, we evaluated the pathogenesis of SARS-CoV-2 variants in human ACE-2-expressing (K18-hACE2) mice. Eight-week-old K18-hACE2 mice were inoculated intranasally with a representative virus from the original B.1 lineage or from the emerging B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), or B.1.1.529 (omicron) lineages. We also infected a group of mice with the mouse-adapted SARS-CoV-2 (MA10). Our results demonstrate that B.1.1.7, B.1.351 and B.1.617.2 viruses are significantly more lethal than the B.1 strain in K18-hACE2 mice. Infection with the B.1.1.7, B.1.351, and B.1.617.2 variants resulted in significantly higher virus titers in the lungs and brain of mice compared with the B.1 virus. Interestingly, mice infected with the B.1.1.529 variant exhibited less severe clinical signs and a high survival rate. We found that B.1.1.529 replication was significantly lower in the lungs and brain of infected mice in comparison with other VoC. The transcription levels of cytokines and chemokines in the lungs of B.1- and B.1.1.529-infected mice were significantly less when compared with those challenged with other VoC. Together, our data provide insights into the pathogenesis of previous and circulating SARS-CoV-2 VoC in mice.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A , SARS-CoV-2/genética
4.
Am J Epidemiol ; 191(7): 1153-1173, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35279711

RESUMO

The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults comprising 14 established US prospective cohort studies. Starting as early as 1971, investigators in the C4R cohort studies have collected data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R links this pre-coronavirus disease 2019 (COVID-19) phenotyping to information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute and postacute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and reflects the racial, ethnic, socioeconomic, and geographic diversity of the United States. C4R ascertains SARS-CoV-2 infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey conducted via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations and high-quality event surveillance. Extensive prepandemic data minimize referral, survival, and recall bias. Data are harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these data will be pooled and shared widely to expedite collaboration and scientific findings. This resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including postacute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term health trajectories.


Assuntos
COVID-19 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Estados Unidos/epidemiologia , Adulto Jovem
5.
Pathogens ; 11(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35215199

RESUMO

Transgenic mice expressing human angiotensin-converting enzyme 2 under the cytokeratin 18 promoter (K18-hACE2) have been extensively used to investigate the pathogenesis and tissue tropism of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Neuroinvasion and the replication of SARS-CoV-2 within the central nervous system (CNS) of K18-hACE2 mice is associated with increased mortality; although, the mechanisms by which this occurs remain unclear. In this study, we generated primary neuronal cultures from K18-hACE2 mice to investigate the effects of a SARS-CoV-2 infection. We also evaluated the immunological response to SARS-CoV-2 infection in the CNS of K18-hACE2 mice and mouse neuronal cultures. Our data show that neuronal cultures obtained from K18-hACE2 mice are permissive to SARS-CoV-2 infection and support productive virus replication. Furthermore, SARS-CoV-2 infection upregulated the expression of genes involved in innate immunity and inflammation, including IFN-α, ISG-15, CXCL10, CCL2, IL-6 and TNF-α, in the neurons and mouse brains. In addition, we found that SARS-CoV-2 infection of neurons and mouse brains activates the ZBP1/pMLKL-regulated necroptosis pathway. Together, our data provide insights into the neuropathogenesis of SARS-CoV-2 infection in K18-hACE2 mice.

6.
Int J Audiol ; 61(6): 443-452, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34431430

RESUMO

OBJECTIVES: (1) To investigate the remote check test battery, designed for self-administration by cochlear implant (CI) recipients, parents/caregivers, to determine if the results give adequate information for clinicians to decide the necessity of an appointment and to capture suggestions for improvement. (2) To gauge acceptance of remote monitoring by CI-recipients and their parents/caregivers. DESIGN: Prospective, multicentre, un-blinded, non-randomized, single-subject, repeated-measures evaluation. The test battery includes an implant-site photograph, impedance measurements, datalogs, questionnaires, speech perception and aided threshold tests. Clinicians reviewed test battery results, followed by a clinical appointment with each CI-recipient, and reported if the battery identified all the issues. Study sample: n = 93 CI-recipients (73 adults, 20 children) and 28 clinicians. RESULTS: The test battery identified 94% (615/656) of all issues. The test battery and clinician observations agreed in 99% (92/93) of cases on the need for a clinic visit. For 68% (63/93) of cases, the test battery identified all clinician observed issues. The majority (77%, 72/93) of recipients would be satisfied if clinic visits were based on their test battery results. A significantly high proportion agreed that remote monitoring was more convenient than clinic visits and could result in travel, time and cost reductions. CONCLUSION: This is the first comprehensive test battery designed for CI-recipient remote monitoring.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Adulto , Criança , Implante Coclear/métodos , Humanos , Estudo de Prova de Conceito , Estudos Prospectivos
7.
J Diabetes Metab Disord ; 20(2): 1773-1784, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900824

RESUMO

The global pandemic of prediabetes and diabetes has led to a severe corresponding complication of these disorders. Neuropathy is one of the most prevalent complication of diabetes is, affecting blood supply of the peripheral nervous system that may eventually results into loss of sensations, injuries, diabetic foot and death. The utmost identified risk of diabetic neuropathy is uncontrolled high blood glucose levels. However, aging, body mass index (BMI), oxidative stress, inflammation, increased HbA1c levels and blood pressure are among the other key factors involved in the upsurge of this disease. The so far treatment to deal with diabetic neuropathy is controlling metabolic glucose levels. Apart from this, drugs like reactive oxygen species (ROS) inhibitors, aldose reductase inhibitors, PKC inhibitors, Serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, N-methyl-D-aspartate receptor (NMDAR) antagonists, are the other prescribed medications. However, the related side-effects (hallucinations, drowsiness, memory deficits), cost, poor pharmacokinetics and drug resistance brought the trust of patients down and thus herbal renaissance is occurring all over the word as the people have shifted their intentions from synthetic drugs to herbal remedies. Medicinal plants have widely been utilized as herbal remedies against number of ailments in Indian medicinal history. Their bioactive components are very much potent to handle different chronic disorders and complications with lesser-known side effects. Therefore, the current article mainly concludes the etiology and pathophysiology of diabetic neuropathy. Furthermore, it also highlights the important roles of medicinal plants and their naturally occurring bioactive compounds in addressing this disease.

8.
J Virol ; 95(22): e0104021, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34495694

RESUMO

We previously identified a subset of interferon-stimulated genes (ISGs) upregulated by West Nile virus (WNV) infection in wild-type mouse embryo fibroblasts (MEFs) after viral proteins had inhibited type I interferon (IFN)-mediated JAK-STAT signaling and also in WNV-infected RIG-I-/-, MDA5-/-, STAT1-/-, STAT2-/-, IFNAR-/-, IRF3-/-, IRF7-/-, and IRF3/7-/- MEFs. In this study, ISG upregulation by WNV infection in IFNAR-/- MEFs was confirmed by transcriptome sequencing (RNA-seq). ISG upregulation by WNV infection was inhibited in RIG-I/MDA5-/- MEFs. ISGs were upregulated in IRF1-/- and IRF5-/- MEFs but only minimally upregulated in IRF3/5/7-/- MEFs, suggesting redundant IRF involvement. We previously showed that a single proximal interferon-stimulated response element (ISRE) in the Oas1a and Oas1b promoters bound the ISGF3 complex after type I IFN treatment. In this study, we used wild-type and mutant promoter luciferase reporter constructs to identify critical regions in the Oas1b and Ifit1 promoters for gene activation in infected IFNAR-/- MEFs. Two ISREs were required in both promoters. Mutation of these ISREs in an Ifit1 promoter DNA probe reduced in vitro complex formation with infected nuclear extracts. An NF-κB inhibitor decreased Ifit1 promoter activity in cells and in vitro complex formation. IRF3 and p50 promoter binding was detected by chromatin immunoprecipitation (ChIP) for upregulated ISGs with two proximal ISREs. The data indicate that ISREs function cooperatively to upregulate the expression of some ISGs when type I IFN signaling is absent, with the binding complex consisting of IRF3, IRF5, and/or IRF7 and an NF-κB component(s) as well as other, as-yet-unknown factors. IMPORTANCE Type I IFN signaling in mammalian cells induces formation of the ISGF3 transcription factor complex, which binds to interferon stimulated response elements (ISREs) in the promoters of interferon-stimulated genes (ISGs) in the cell nucleus. Flavivirus proteins counteract type I IFN signaling by preventing either the formation or nuclear localization of ISGF3. A subset of ISRE-regulated ISGs was still induced in West Nile virus (WNV)-infected mouse embryo fibroblasts (MEFs), indicating that cells have an alternative mechanism for activating these ISGs. In this study, cellular components involved in this ISG upregulation mechanism were identified using gene knockout MEFs and ChIP, and critical promoter regions for gene activation were mapped using reporter assays. The data indicate a cooperative function between two ISREs and required binding of IRF3, IRF5, and/or IRF7 and an NF-κB component(s). Moreover, type I IFN signaling-independent ISG activation requires different additional promoter activation regions than type I IFN-dependent activation.


Assuntos
Fibroblastos , Regulação da Expressão Gênica/imunologia , Interferon Tipo I/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Fibroblastos/imunologia , Fibroblastos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elementos de Resposta/imunologia
9.
Front Mol Neurosci ; 14: 576038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912008

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in the aging population. Evidence implicates elevated soluble oligomeric Aß as one of the primary triggers during the prodromic phase leading to AD, effected largely via hyperphosphorylation of the microtubule-associated protein tau. At low, physiological levels (pM-nM), however, oligomeric Aß has been found to regulate synaptic plasticity as a neuromodulator. Through mutational analysis, we found a core hexapeptide sequence within the N-terminal domain of Aß (N-Aßcore) accounting for its physiological activity, and subsequently found that the N-Aßcore peptide is neuroprotective. Here, we characterized the neuroprotective potential of the N-Aßcore against dysfunction of synaptic plasticity assessed in ex vivo hippocampal slices from 5xFAD APP/PS1 mice, specifically hippocampal long-term potentiation (LTP) and long-term depression (LTD). The N-Aßcore was shown to reverse impairment in synaptic plasticity in hippocampal slices from 5xFAD APP/PS1 model mice, both for LTP and LTD. The reversal by the N-Aßcore correlated with alleviation of downregulation of hippocampal AMPA-type glutamate receptors in preparations from 5xFAD mice. The action of the N-Aßcore depended upon a critical di-histidine sequence and involved the phosphoinositide-3 (PI3) kinase pathway via mTOR (mammalian target of rapamycin). Together, the present findings indicate that the non-toxic N-Aßcore hexapeptide is not only neuroprotective at the cellular level but is able to reverse synaptic dysfunction in AD-like models, specifically alterations in synaptic plasticity.

10.
Viruses ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477869

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can cause neurological disease in humans, but little is known about the pathogenesis of SARS-CoV-2 infection in the central nervous system (CNS). Herein, using K18-hACE2 mice, we demonstrate that SARS-CoV-2 neuroinvasion and encephalitis is associated with mortality in these mice. Intranasal infection of K18-hACE2 mice with 105 plaque-forming units of SARS-CoV-2 resulted in 100% mortality by day 6 after infection. The highest virus titers in the lungs were observed on day 3 and declined on days 5 and 6 after infection. By contrast, very high levels of infectious virus were uniformly detected in the brains of all the animals on days 5 and 6. Onset of severe disease in infected mice correlated with peak viral levels in the brain. SARS-CoV-2-infected mice exhibited encephalitis hallmarks characterized by production of cytokines and chemokines, leukocyte infiltration, hemorrhage and neuronal cell death. SARS-CoV-2 was also found to productively infect cells within the nasal turbinate, eye and olfactory bulb, suggesting SARS-CoV-2 entry into the brain by this route after intranasal infection. Our data indicate that direct infection of CNS cells together with the induced inflammatory response in the brain resulted in the severe disease observed in SARS-CoV-2-infected K18-hACE2 mice.


Assuntos
Encéfalo/virologia , COVID-19/patologia , Encefalite Viral/patologia , Pulmão/virologia , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Encéfalo/patologia , COVID-19/mortalidade , Citocinas/sangue , Modelos Animais de Doenças , Encefalite Viral/virologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Carga Viral
11.
Viruses ; 14(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35062231

RESUMO

The emergence of new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern pose a major threat to public health, due to possible enhanced virulence, transmissibility and immune escape. These variants may also adapt to new hosts, in part through mutations in the spike protein. In this study, we evaluated the infectivity and pathogenicity of SARS-CoV-2 variants of concern in wild-type C57BL/6 mice. Six-week-old mice were inoculated intranasally with a representative virus from the original B.1 lineage, or the emerging B.1.1.7 and B.1.351 lineages. We also infected a group of mice with a mouse-adapted SARS-CoV-2 (MA10). Viral load and mRNA levels of multiple cytokines and chemokines were analyzed in the lung tissues on day 3 after infection. Our data show that unlike the B.1 virus, the B.1.1.7 and B.1.351 viruses are capable of infecting C57BL/6 mice and replicating at high concentrations in the lungs. The B.1.351 virus replicated to higher titers in the lungs compared with the B.1.1.7 and MA10 viruses. The levels of cytokines (IL-6, TNF-α, IL-1ß) and chemokine (CCL2) were upregulated in response to the B.1.1.7 and B.1.351 infection in the lungs. In addition, robust expression of viral nucleocapsid protein and histopathological changes were detected in the lungs of B.1.351-infected mice. Overall, these data indicate a greater potential for infectivity and adaptation to new hosts by emerging SARS-CoV-2 variants.


Assuntos
COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Animais , COVID-19/imunologia , COVID-19/patologia , Citocinas/imunologia , Modelos Animais de Doenças , Especificidade de Hospedeiro , Inflamação , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Carga Viral , Replicação Viral
12.
Ann Diagn Pathol ; 47: 151551, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592993

RESUMO

Anogenital mammary-like glands, formerly described as ectopic breast tissue, are currently considered to be normal histologic components of the anogenital region. Anogenital mammary-like glands can give rise to many lesions identical to counterparts in the native female breast. We describe four cases of such lesions, including fibroadenoma, gynecomastia-like hyperplasia, and ectopic mammary-type tissue with a spectrum of usual ductal hyperplasia, apocrine metaplasia, adenosis, and pseudolactational change. All four cases occurred in young women (ages 29-38) who presented with vulvar or perianal masses. Similar to previously reported cases, these lesions shared histologic and immunohistochemical characteristics identical to native female breast lesions. Novel findings in our cases included (1) the first case of gynecomastia-like change to be reported in the perianal area of a female, (2) Immunohistochemical staining identifying a 3-layered epithelium characterized by a population of CK14 and CK5/6 positive and hormone receptor negative superficial luminal cells, and (3) diffuse, strong positivity for GATA3 in all cases. Our study adds to the literature on these rare lesions and highlights findings which may be useful in understanding the pathogenesis and improving the diagnosis of anogenital mammary-like gland lesions.


Assuntos
Coristoma/patologia , Fator de Transcrição GATA3/metabolismo , Imuno-Histoquímica/métodos , Glândulas Mamárias Humanas/patologia , Períneo/patologia , Adulto , Neoplasias do Ânus/patologia , Mama/patologia , Doenças Mamárias/patologia , Neoplasias da Mama/patologia , Feminino , Fibroadenoma/patologia , Doença da Mama Fibrocística/patologia , Humanos , Glândulas Mamárias Humanas/imunologia , Metrorragia/diagnóstico , Metrorragia/etiologia , Neoplasias Vulvares/patologia
13.
Virology ; 547: 7-11, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442105

RESUMO

SARS-COV-2 has recently emerged as a new public health threat. Herein, we report that the FDA-approved drug, auranofin, inhibits SARS-COV-2 replication in human cells at low micro molar concentration. Treatment of cells with auranofin resulted in a 95% reduction in the viral RNA at 48 h after infection. Auranofin treatment dramatically reduced the expression of SARS-COV-2-induced cytokines in human cells. These data indicate that auranofin could be a useful drug to limit SARS-CoV-2 infection and associated lung injury due to its antiviral, anti-inflammatory and anti-reactive oxygen species (ROS) properties. Further animal studies are warranted to evaluate the safety and efficacy of auranofin for the management of SARS-COV-2 associated disease.


Assuntos
Auranofina/farmacologia , Betacoronavirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Infecções por Coronavirus , Citocinas , Avaliação Pré-Clínica de Medicamentos , Ouro , Humanos , Inflamação , Pandemias , Pneumonia Viral , SARS-CoV-2
14.
Sci Rep ; 10(1): 5696, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231242

RESUMO

Understanding the specific gene changes underlying the prodromic stages of Alzheimer's disease pathogenesis will aid the development of new, targeted therapeutic strategies for this neurodegenerative disorder. Here, we employed RNA-sequencing to analyze global differential gene expression in a defined model nerve cell line expressing α4ß2 nicotinic receptors (nAChRs), high-affinity targets for beta amyloid (Aß). The nAChR-expressing neuronal cells were treated with nanomolar Aß1-42 to gain insights into the molecular mechanisms underlying Aß-induced neurotoxicity in the presence of this sensitizing target receptor. We identified 15 genes (out of 15,336) that were differentially expressed upon receptor-linked Aß treatment. Genes up-regulated with Aß treatment were associated with calcium signaling and axonal vesicle transport (including the α4 nAChR subunit, the calcineurin regulator RCAN3, and KIF1C of the kinesin family). Downregulated genes were associated with metabolic, apoptotic or DNA repair pathways (including APBA3, PARP1 and RAB11). Validation of the differential expression was performed via qRT-PCR and immunoblot analysis in the defined model nerve cell line and primary mouse neurons. Further verification was performed using immunocytochemistry. In conclusion, we identified apparent changes in gene expression on Aß treatment in the presence of the sensitizing nAChRs, linked to early-stage Aß-induced neurotoxicity, which may represent novel therapeutic targets.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Receptores Nicotínicos/metabolismo , Transcriptoma , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Reparo do DNA , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , Neurônios/metabolismo , Reação em Cadeia da Polimerase
15.
Cancers (Basel) ; 12(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102296

RESUMO

Human papillomavirus-negative (HPV-neg) oropharyngeal squamous cell carcinomas (OPSCCs) are associated with poorer overall survival (OS) compared with HPV-positive (HPV-pos) OPSCCs. The major obstacle in improving outcomes of HPV-neg patients is the lack of robust biomarkers and therapeutic targets. Herein, we investigated the role of centrosome amplification (CA) as a prognostic biomarker in HPV-neg OPSCCs. A quantitative evaluation of CA in clinical specimens of OPSCC revealed that (a) HPV-neg OPSCCs exhibit higher CA compared with HPV-pos OPSCCs, and (b) CA was associated with poor OS, even after adjusting for potentially confounding clinicopathologic variables. Contrastingly, CA was higher in HPV-pos cultured cell lines compared to HPV-neg ones. This divergence in CA phenotypes between clinical specimens and cultured cells can therefore be attributed to an inaccurate recapitulation of the in vivo tumor microenvironment in the cultured cell lines, namely a hypoxic environment. The exposure of HPV-neg OPSCC cultured cells to hypoxia or stabilizing HIF-1α genetically increased CA. Both the 26-gene hypoxia signature as well as the overexpression of HIF-1α positively correlated with increased CA in HPV-neg OPSCCs. In addition, we showed that HIF-1α upregulation is associated with the downregulation of miR-34a, increase in CA and expression of cyclin- D1. Our findings demonstrate that the evaluation of CA may aid in therapeutic decision-making, and CA can serve as a promising therapeutic target for HPV-neg OPSCC patients.

16.
Nanoscale Adv ; 2(10): 4770-4776, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132906

RESUMO

Herein we report a facile and sustainable method for the preparation of ZnS@graphene nano-composites (NCs). An appreciable amount of graphene is obtained by liquid-phase exfoliation using a zinc-containing surface active ionic liquid (SAIL). It is followed by in situ preparation of ZnS quantum dot (QD) decorated graphene sheets at room temperature for the first time. The employed method is distinct from all previous reports, as we have employed graphene instead of graphene oxide (GO) or reduced graphene oxide (rGO) and used relatively fewer chemicals. Further, a SAIL is employed as a precursor of Zn2+ as well as a template for the preparation of ZnS QDs onto graphene. The prepared ZnS@graphene NCs show enhanced photocatalytic performance for the degradation of Rhodamine B dye under sunlight and ciprofloxacin antibiotic under visible light as compared to bare ZnS QDs. The better photocatalytic activity of the NCs under visible light compared to that reported in the literature along with the ease of preparation is advantageous for scaling-up the process.

17.
Viruses ; 12(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861621

RESUMO

West Nile virus (WNV) is a flavivirus that has disseminated globally as a significant cause of viral encephalitis in humans. MircoRNA-155 (miR-155) regulates various aspects of innate and adaptive immune responses. We previously reported that WNV infection induces upregulation of miR-155 in mice brains. In the current study, we demonstrate the critical role of miR-155 in restricting the pathogenesis of WNV infection in mice. Compared to wild-type (WT) mice, miR-155 knockout mice exhibited significantly higher morbidity and mortality after infection with either a lethal strain, WNV NY99, or a non-lethal strain, WNV Eg101. Increased mortality in miR-155-/- mice was associated with significantly high WNV burden in the serum and brains. Protein levels of interferon (IFN)-α in the serum and brains were higher in miR-155-/- mice. However, miR-155-/- mice exhibited significantly lower protein levels of anti-viral interleukin (IL)-1ß, IL-12, IL-6, IL-15, and GM-CSF despite the high viral load. Primary mouse cells lacking miR-155 were more susceptible to infection with WNV compared to cells derived from WT mice. Besides, overexpression of miR-155 in human neuronal cells modulated anti-viral cytokine response and resulted in significantly lower WNV replication. These data collectively indicate that miR-155 restricts WNV production in mouse and human cells and protects against lethal WNV infection in mice.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Carga Viral , Replicação Viral , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/patologia
18.
Front Microbiol ; 10: 2089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572318

RESUMO

West Nile virus (WNV), a neurotropic flavivirus, is the leading cause of viral encephalitis in the United States. Recently, Zika virus (ZIKV) infections have caused serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome and microcephaly. Z-DNA binding protein 1 (ZBP1) is a cytoplasmic sensor that that has been shown to play a significant role in initiating a robust immune response. We previously reported that WNV and ZIKV infections induce dramatic up-regulation of ZBP1 in mouse brains as well as in infected primary mouse cells. Herein, we show the critical role of ZBP1 in restricting the pathogenesis of WNV and ZIKV infections. Deletion of ZBP1 resulted in significantly higher morbidity and mortality after infection with a pathogenic WNV NY99 strain in mice. No mortality was observed in wild-type (WT) mice infected with the non-pathogenic WNV strain, Eg101. Interestingly, infection of ZBP1-/- mice with WNV Eg101 was lethal resulting in 100% mortality, suggesting that ZBP1 is required for survival after WNV infection. Viremia and brain viral load were significantly higher in ZBP1-/- mice compared to WT mice. In addition, protein levels of interferon (IFN)-α, and inflammatory cytokines and chemokines were significantly higher in the serum and brains of infected ZBP1-/- mice compared to the WT mice. Primary mouse cortical neurons and mouse embryonic fibroblasts (MEFs) derived from ZBP1-/- mice produced higher virus titers compared to WT cells after infection with WNV NY99 and WNV Eg101. Similarly, neurons and MEFs lacking ZBP1 exhibited significantly enhanced replication of PRVABC59 (Asian) and MR766 (African) ZIKV compared to WT cells. The knockout of ZBP1 function in MEFs inhibited ZBP1-dependent virus-induced cell death. In conclusion, these data reveal that ZBP1 restricts WNV and ZIKV production in mouse cells and is required for survival of a peripheral WNV infection in mice.

19.
Viruses ; 11(2)2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781519

RESUMO

Zika virus (ZIKV) infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. MicroRNAs (miRNAs) are a group of small RNAs involved in the regulation of a wide variety of cellular and physiological processes. In this study, we analyzed digital miRNA and mRNA profiles in ZIKV-infected primary mouse neurons using the nCounter technology. A total of 599 miRNAs and 770 mRNAs were examined. We demonstrate that ZIKV infection causes global downregulation of miRNAs with only few upregulated miRNAs. ZIKV-modulated miRNAs including miR-155, miR-203, miR-29a, and miR-124-3p are known to play critical role in flavivirus infection, anti-viral immunity and brain injury. ZIKV infection also results in downregulation of miRNA processing enzymes. In contrast, ZIKV infection induces dramatic upregulation of anti-viral, inflammatory and apoptotic genes. Furthermore, our data demonstrate an inverse correlation between ZIKV-modulated miRNAs and target host mRNAs induced by ZIKV. Biofunctional analysis revealed that ZIKV-modulated miRNAs and mRNAs regulate the pathways related to neurological development and neuroinflammatory responses. Functional studies targeting specific miRNA are warranted to develop therapeutics for the management of ZIKV neurological disease.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/genética , Neurônios/virologia , RNA Mensageiro/genética , Infecção por Zika virus/genética , Animais , Células Cultivadas , Regulação para Baixo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Regulação para Cima , Replicação Viral , Zika virus
20.
Arch Pathol Lab Med ; 142(11): 1421-1424, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30407856

RESUMO

Extraskeletal mesenchymal chondrosarcoma is a rare soft tissue sarcoma arising from soft tissues, mainly of the lower extremities, meninges, and orbits. It usually presents during the second to third decades of life, and has a slight predominance in females. Histologically, it has a typical biphasic pattern comprising small cells and islands of hyaline cartilage. It can pose a diagnostic challenge in small biopsy specimens where 1 of the 2 components can be absent. The prognosis is extremely variable; survival varies depending on the location of the tumor.


Assuntos
Condrossarcoma Mesenquimal/patologia , Sarcoma/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...